

# **1. CONTENTS**

| ۱. | CONTENTS                        | i  |
|----|---------------------------------|----|
| 2. | INTRODUCTION                    | 1  |
| 3. | UNIVAC 1004 III SYSTEM          | 2  |
|    | PROCESSOR                       | 3  |
|    | PRINTER                         | 4  |
|    | CARD READER                     | 5  |
|    | MAGNETIC TAPE UNITS             | 6  |
|    | UNISERVO VIC MAGNETIC TAPE UNIT | 6  |
|    | UNISERVO A MAGNETIC TAPE UNIT   | 7  |
| 4. | PERIPHERAL EQUIPMENT            | 8  |
|    | CARD PUNCH                      | 10 |
|    | READ/PUNCH                      | 11 |
|    | AUXILIARY CARD READER           | 12 |
|    | PAPER TAPE READER               | 13 |
|    | PAPER TAPE PUNCH                | 14 |
|    | DATA LINE TERMINAL              | 15 |
|    | TYPE ONE                        | 15 |
|    | TYPE TWO                        | 16 |
|    | UNIVAC 1001 CARD CONTROLLER     | 17 |

i

# 2. INTRODUCTION

This publication introduces the UNIVAC 1004 III data processing system. The UNIVAC 1004 series is a recognized leader in the field of small scale data processing equipment. Now the unique power and versatility of UNIVAC 1004 data processing is augmented by the addition of magnetic tape storage and greatly increased speeds.

The UNIVAC 1004 III system offers a growth margin which is both practical and comfortable. It eliminates the need for massive card storage, expensive conversions, site preparation, and the inconveniences long accepted as a part of the expansion to tape systems. The UNIVAC 1004 III system offers compatibility: with Non Return to Zero tape systems recording at 200, 556, or 800 characters per inch (CPI); or with UNIVAC Return to Zero systems recording at 50, 125, or 250 CPI. The UNIVAC 1004 III system can function as a fully self-contained data processing system, ideally suited for integrated processing, report generation, and data communications. Or, through its compatible tape formats, the system can be a versatile peripheral online to a large scale system. It displays tremendous power equally well offline for report preparation, editing, and formatting; freeing larger systems for more efficient processing utilization.

With powerful logical and arithmetic capabilities, compatibility with larger systems, and the ability to expand through additional equipment to meet new demands, the UNIVAC 1004 III system offers flexibility, power, and economy unmatched by any other system available today.

# 3. UNIVAC 1004 III SYSTEM

The UNIVAC 1004 III system consists of a processor, printer, and card reader in a central unit, and a separate magnetic tape unit (Fig. 1). A variety of optional input/output units is available including: card punch, read/punch, auxiliary card reader, paper tape reader, paper tape punch, the UNIVAC 1001 Card Controller and data communications devices.



Figure 1. UNIVAC 1004 III System

### PROCESSOR

The processor of the UNIVAC 1004 III system utilizes a magnetic core store containing 961 locations. An additional 961 locations can be added to increase core storage capacity to 1922 locations. Each location is capable of storing any one of 64 six bit characters. Any single location is directly addressable, and any number of adjacent locations is directly addressable as a single data unit. Portions of storage are allocated for input/output. These areas may be used freely as working storage when not in use for input/ output operations.

Programs proceed in segments called "steps". Several operations can be combined on a single step; up to 62 steps are available. It is possible to vary the operations performed on a given step during the program. Any step may include both processing and input/output operations. The processor automatically performs addition and subtraction (absolute and algebraic), comparison (absolute, algebraic, and alphanumeric), and transfers, which include a variety of editing operations. Characters or individual bits may be tested or arbitrarily inserted or superimposed in any storage location. Program branching is completely flexible.

UNIVAC 1004 III programs are wired on the 1004 Connection Panel. Programs wired for other models of the UNIVAC 1004 can be run without modification on the UNIVAC 1004 III system.

|              | CHARACT                                                                                                                                                                                                        | ERISTICS |                                                                                                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|
| CORE STORAGE | 961 or 1922 locations. Each location can<br>store any one of 64 characters.<br>Full storage available for input, output,<br>constants, intermediate results. No storage<br>capacity required for instructions. | SPEED    | 6.5 microsecond access time.<br>Typical arithmetic speeds:<br>Add two 8 digit fields:<br>0.130 milliseconds |
| ADDRESSING   | Any number of adjacent locations, from one location to entire storage, is addressable as a single data unit.                                                                                                   |          | Multiply 6 digit field by 4 digit field:<br>3.77 milliseconds                                               |
| PROGRAMMING  | Programming performed by Connection Panel<br>wiring. Both processing and I/O operations<br>can be performed on one program step.                                                                               |          | Compare two 6 digit fields:<br>0.104 milliseconds                                                           |
| SIMULTANEITY | Processing can occur simultaneously with<br>card or paper tape punching, printer form<br>advance, read/punch card reading, and<br>read/punch card punching.                                                    |          | Divide 6 digit field by 4 digit field for<br>3 digit quotient:<br>3.26 milliseconds                         |

#### PRINTER

The printer is attached to the left of the processor (Fig. 2). Printing speeds up to 600 lines per minute may be obtained, with a maximum of 132 print positions per line. Character spacing is ten to the inch horizontally, with an option to the operator of six or eight lines to the inch vertically. Any one of sixty-three characters may be printed at each of the 132 print locations. Paper travel through the printer is controlled by a paper tape carriage control loop that may be punched in one or more of three channels. Paper tape carriage control loops are easily created and stored, and can be utilized for a variety of forms. Forms from 4 to 22 inches in width may be handled by the carriage. Forms up to 22 inches long can be controlled by the paper loop mechanism. Longer forms may be handled by programming.

|                         | CHARACT                                                                                                                              | ERISTICS                     |                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|
| PAPER STOCK             | Forms from 4 to 22 inches wide may be accomodated by the carriage.                                                                   | SPEED                        | Up to 600 lines per minute.                                                          |
| PROGRAMMED              | Print, print and space; page ejections.                                                                                              | SIMULTANEITY                 | Printing, punching and reading may all oc-<br>cur simultaneously.                    |
| OPERATIONS              |                                                                                                                                      | OUTPUT AREA                  | Assigned area in core storage, any part of which may be used as working storage when |
| PRINTABLE<br>CHARACTERS | 10 numeric; 26 alphabetic, and 28 special characters including space.                                                                |                              | not in use for output.                                                               |
|                         |                                                                                                                                      | REPRODUCTION<br>SYSTEM       | Hammer stroke against an etched drum.                                                |
| DATA FORMAT             | 132 print positions per line, 10 characters<br>per inch. Standard vertical spacing is 6 or 8<br>lines per inch with operator option. | MAXIMUM NUMBER<br>PER SYSTEM | One                                                                                  |



Figure 2. Printer



Figure 3. Card Reader

#### CARD READER

The card reader is located at the right front of the processor (Fig. 3). Cards are read serially at the rate of 615 cpm on a demand basis. The cards are read as they pass the read station made up of 12 photo cells. During reading, the card image is transferred to a section of the core storage assigned to card reading. This area of storage is referred to as read storage.

The input magazine at the front of the read section has a capacity of approximately 1200 cards and is angled toward the centrally located operator controls for easy access. The card stacker, located above and to the rear of the input magazine, holds approximately 1,500 cards. A card is fed to the wait section where the direction of travel is altered to allow the cards to pass under the photo cells serially. After the card is read it is deposited "on end" in the card stacker.

80 Column, 90 Column or code image cards may be read.

| CHARACTERISTICS          |                                                                                                                                                                                  |                    |                                                                                                                                                                                                                                         |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CARDS                    | 80 Column, 90 Column, or code image<br>cards (optional).                                                                                                                         | DATA<br>PROTECTION | A light-dark photocell test is employed.<br>The light test is automatically made be-<br>tween the reading of each card. If all photo-<br>cell positions are not simultaneously read-                                                    |  |  |  |  |
| PROGRAMMED<br>OPERATIONS | Cards are read serially and transferred into<br>storage until program specified column is<br>read. Data is available as it is entering<br>storage and may be tested for control. |                    | ing (sensing light) during the card gap, an<br>error condition is indicated and the pro-<br>cessor is automatically stopped.                                                                                                            |  |  |  |  |
| SPEED                    | Up to 615 cards per minute.                                                                                                                                                      |                    | The dark test is also automatically made at<br>the end of each card gap time, immediately<br>following the light test. If at the end of<br>card gap time all photocell positions do not<br>indicate a dark condition resulting from the |  |  |  |  |
| READ SYSTEM              | Photoelectric reading. Demand basis; al-<br>ways a card at wait station to be read.                                                                                              |                    | sensing of the leading edge of the next<br>card, an error condition is indicated and<br>the processor is automatically stopped.                                                                                                         |  |  |  |  |
| SIMULTANEITY             | Reading, printing and punching may occur simultaneously.                                                                                                                         |                    | Checks for card misfeed as well as an<br>empty input magazine and full stacker are<br>also provided.                                                                                                                                    |  |  |  |  |
| INPUT AREA               | Assigned area in come storage, any part of which may be used as working storage when                                                                                             | INPUT MAGAZINE     | 1200 card capacity.                                                                                                                                                                                                                     |  |  |  |  |
|                          | not in use for input.                                                                                                                                                            | STACKER            | 1500 card capacity.                                                                                                                                                                                                                     |  |  |  |  |



b. UNISERVO A Magnetic Tape Unit.

Figure 4. Magnetic Tape Units

### MAGNETIC TAPE UNITS

a. UNISERVO ∑IC Magnetic

Tape Unit.

The UNIVAC 1004 III System is equipped with one of two types of magnetic tape unit: the UNISERVO A Magnetic Tape Unit, or the UNI-SERVO VIC Magnetic Tape Unit. Both units are available in single or dual models. Choice of unit and model will depend on user requirements.

Magnetic tape is used for permanent or temporary storage of large files. One 2400 ft. reel of UNIVAC 1004 III Magnetic tape is  $10\frac{1}{2}$ '' in diameter, and holds data that would fill up to 160,000 cards, recorded on the UNISERVO VIC tape unit, and up to 65,000 cards, recorded on the UNISERVO A tape unit.

Magnetic tape reading and writing operations are controlled by the program. Input/Output areas may be any portion of core storage designated by the programmer. All magnetic tape operations can be performed simultaneously with card (or paper tape) punching. Data checking includes character parity, automatically performed by both tape units. Necessary reformatting, processing, code conversions, etc., are performed by the program.

#### UNISERVO VIC Magnetic Tape Unit

The UNISERVO VIC Magnetic Tape Unit(Fig. 4a) provides the UNIVAC 1004 III system with the capability of reading and writing IBM compatible tapes at densities of 200, 556, and 800 CPI. No conversion on other equipment is required. When the dual model is used, it is possible to read or write any six level code at a given density on one unit, and another code at a different density on the other unit. Seven tape tracks are read and written; one parity and six data tracks.

| TAPE                | Plastic tape in reels up to 2400.                     |                                                 | DATA TRANSFER            | 200 CPI                              | 8,540 chars. per sec.                                               |
|---------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------|--------------------------------------|---------------------------------------------------------------------|
| TAPE SPEEDS         | Read/Write Speed<br>Rewind Speed                      | 42.7 inches per second.<br>Less than 3 minutes. | SPEEDS                   | 556 CPI<br>800 CPI                   | 23,741 chars. per sec.<br>34,160 chars. per sec.                    |
| START/STOP<br>TIMES | Read Start<br>Read Start after<br>Backspace           | 15.1 ms.                                        | DATA FORMAT              | Variable blocks o block gap of 3/4". | f 6 bit characters. Inter-                                          |
|                     | Read Stop<br>Write Start<br>Write Check<br>Write Stop | 10.9 ms.*<br>9.3 ms.<br>5.8 ms.<br>10.9 ms.*    | PROGRAMMED<br>OPERATIONS |                                      | rite forward, backspace<br>gnore, erase before write,<br>nd rewind. |
|                     | Backspace Start<br>after Read or<br>Write             | 10.9 ms.                                        | DATA CHECKING            | Character parity, after write.       | longitudinal parity, read                                           |
|                     | Backspace Stop<br>Transport<br>Selection              | 10.9 ms.*<br>6.0 ms.*                           | I/O AREA                 | Any area of storag<br>mer.           | ge designated by program-                                           |

#### CHARACTERISTICS

Indicates Processor is not interlocked.

#### UNISERVO A Magnetic Tape Unit

The UNISERVO A Magnetic Tape Unit (Fig. 4b), used with the UNIVAC 1004 III System, is provided for users requiring compatibility with any UNIVAC system having the capability of reading and writing tape on the UNISERVO IIA tape unit. Tape is read and written at densities of 125 or 250 characters per inch (CPI). The unit can also read tape written by a Unityper at a density of 50 CPI. The UNIVAC Return to Zero mode of recording is utilized to write 8 tape tracks: six data tracks, one parity track, and one sprocket track.

| CHARACTERISTICS     |                                                    |                                     |                                     |                                           |                                                                    |                                                                                                      |  |
|---------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| TAPE                |                                                    | in reels up to<br>reels up to 150   |                                     | DATA TRANSFER<br>SPEEDS                   | 50 CPI<br>125 CPI<br>250 CPI                                       | 5,000 chars. per sec.<br>12,500 chars. per sec.<br>25,000 chars. per sec.                            |  |
| TAPE SPEEDS         | Read/Write<br>Rewind Speed: 100 inches per second. |                                     | DATA FORMAT                         |                                           | acters. Block length and inter-<br>variable, depending on applica- |                                                                                                      |  |
| START/STOP<br>TIMES | Start Time<br>Stop Time                            | 125 CPI<br>20.25 ms.<br>18.00 ms.** | 250 CPI<br>13.50 ms.<br>11.00 ms.** | PROGRAMMED<br>OPERATIONS<br>DATA CHECKING | data ignore<br>Character p                                         | rd, read backward, write forward,<br>e, transport select, and rewind.<br>parity, block length check. |  |
|                     | Tape Loop<br>Reversal                              | 600 ms.                             | 600 ms.                             | I/O AREA                                  | Any area o<br>mer.                                                 | f storage designated by program-                                                                     |  |

\*\* Processor interlock removed 1 ms. after last character is read or written.

# 4. PERIPHERAL EQUIPMENT

The UNIVAC 1004 III system can be expanded through the use of a wide variety of optional input/output equipment (Fig. 5). Eight different units are available, providing over sixty possible system configurations to meet exactly the requirements of the individual user. In addition to expanded card handling capacity, complete paper tape and data communication capabilities are available with the UNIVAC 1004 III system. All peripheral equipment is under control of programs wired on the standard UNIVAC 1004 Connection Panel.



Figure 5. UNIVAC 1004 III System Configurations

### CARD PUNCH

The card punch is available as an optional unit (Fig. 6). The punch is directly connected to the UNIVAC 1004 III processor through an electrical cable. A section of storage is set aside to be used as punch storage. Data to be punched is transferred to this section of storage prior to punching. Punching and processing may take place at the same time.

The speed of the card punch is 200 cards per minute regardless of the amount of information to be punched into the card a row at a time. The capacity of the input magazine is 1000 cards.

There are two output stackers having a capacity of 1000 cards each. Output cards can be segregated under program control through the use of the optional stacker select feature.

An automatic weighted hole count check is made on all cards punched. If a card is incorrectly punched, it will automatically be selected into the output error stacker.

| CHARACTERISTICS                   |                                                                                                        |                              |                                                                                                                               |  |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CARDS                             | 80 column, 90 column, or code image cards<br>(optional).                                               | DATA<br>PROTECTION           | Post punch hole count is made. Error card<br>is transported to select stacker. Operator<br>option to halt processor on error. |  |  |  |  |  |
| PROGRAMMED<br>OPERATIONS<br>SPEED | Punch data from core storage into cards.<br>Select output stacker (optional).<br>200 cards per minute. | INPUT MAGAZINE               | 1000 card capacity.                                                                                                           |  |  |  |  |  |
| SIMULTANEITY                      | Punching overlaps reading, printing and processing.                                                    | STACKERS                     | Two, each with 1000 card capacity.                                                                                            |  |  |  |  |  |
| OUTPUT AREA                       | Assigned area in core storage, which may<br>be used as working storage when not in use<br>for output.  | MAXIMUM NUMBER<br>PER SYSTEM | One.                                                                                                                          |  |  |  |  |  |



Figure 6. Card Punch



Figure 7. Read/Punch

### **READ/PUNCH**

The read/punch unit (Fig. 7) reads input data from 80 or 90 column cards at a speed of 200 cards per minute, and punches output data into the same cards. The processor may also read 615 cards per minute concurrently, giving an overall card reading capability of up to 815 cards per minute.

Reading and punching are verified by a weighted hole-count check feature.

|                                   | CHARACT                                                                                                                              | ERISTICS                     |                                                                                                                         |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| CARDS                             | 80 column, 90 column or code image cards (optional).                                                                                 | INPUT/OUTPUT<br>AREAS        | Assigned areas in core storage, which may<br>be used as working storage when not in use<br>for input/output operations. |
| PROGRAMMED<br>OPERATIONS<br>SPEED | Read input data from, and punch output data<br>into the same cards. Select output stacker.<br>200 cards per minute while reading and | DATA<br>PROTECTION           | Reading and punching are verified by weighted hole count at the post punch station.                                     |
| SIMULTANEITY                      | punching,<br>Read/Punch functions do not interlock<br>processor; both reading and punching can                                       | INPUT MAGAZINE<br>STACKERS   | 1000 card capacity.<br>Two, each with 1000 card capacity.                                                               |
|                                   | overlap printing, processing and reading by the processor.                                                                           | MAXIMUM NUMBER<br>PER SYSTEM | One.                                                                                                                    |

### AUXILIARY CARD READER

The auxiliary card reader is a free-standing unit which can be cable-connected to a UNIVAC 1004 III processor (Fig. 8).

The maximum card feeding rate is 400 cards per minute, reading 80 or 90 column cards serially. The auxiliary card reader has an input magazine capacity of 1000 cards and three program selectable output stackers, each with a capacity of 1000 cards. When the auxiliary card reader is used in conjunction with the read/punch unit, 3 input stations are available; processor reader, auxiliary reader and read/punch unit. The capability of reading cards in three different input stations provides the UNIVAC 1004 III system with power and processing capabilities unobtainable in many large scale data processing systems.

| CHARACTERISTICS          |                                                                                                                              |                              |                                                                                                                  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| CARDS                    | 80 column, 90 column or code image cards<br>(optional).                                                                      | INPUT AREA                   | Assigned area in core storage, any part<br>of which may be used as working storage<br>when not in use for input. |  |  |  |
| PROGRAMMED<br>OPERATIONS | Card reading. Data is entered into core<br>storage. Three program selectable stackers.<br>Number of card columns to be read. | DATA<br>PROTECTION           | Light-dark test.                                                                                                 |  |  |  |
|                          |                                                                                                                              | INPUT MAGAZINE               | 1000 card capacity.                                                                                              |  |  |  |
| SPEED                    | 400 cards per minute.                                                                                                        | STACKERS                     | Three, each with 1000 card capacity.                                                                             |  |  |  |
| SIMULTANEITY             | Reading, punching and printing may occur simultaneously.                                                                     | MAXIMUM NUMBER<br>PER SYSTEM | One.                                                                                                             |  |  |  |



Figure 8. Auxiliary Card Reader



Figure 9. Paper Tape Reader (mounted on card reader)

### PAPER TAPE READER

The paper tape reader is available as an optional unit (Fig. 9). It is located adjacent to and in front of the card reader. The unit utilizes a photoelectric read process and reads 5, 6, 7 or 8 channel paper or Mylar\* tape. It reads variable length blocks (maximum 961 characters) into magnetic core storage at the rate of 400 characters per second while checking odd parity. Paper tape can be read while printing and punching. Loading paper tape to be read is accomplished by a short movement of a lever. Only chad tape is read. Parity error results in a signal available for corrective action.

|                         | CHARACT                                                                          | ERISTICS                     |                                                                                                                                    |
|-------------------------|----------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| TAPE                    | 11/16", 7/8" or 1" Mylar* or paper chad tape.                                    | READ SYSTEM                  | Photoe lectric.                                                                                                                    |
| DATA FORMAT             | 5, 6, 7, and 8 level codes. 10 frames to the inch.                               | INPUT AREA                   | Assigned area in core storage which may be<br>expanded by programmer. May be used as<br>working storage when not in use for input. |
| PROGRAMMED<br>OPERATION | Read data into core storage. Data is available for testing as it enters storage. | DATA                         | Size limited only by storage capacity.<br>Parity check.                                                                            |
| SPEED                   | 400 frames per second.                                                           | PROTECTION                   |                                                                                                                                    |
| SIMULTANEITY            | Tape reading, punching, and printing may occur simultaneously.                   | MAXIMUM NUMBER<br>PER SYSTEM | One.                                                                                                                               |

\* Trademark of the DuPont Company

# PAPER TAPE PUNCH

The paper tape punch (Fig. 10) is available as an optional unit. It is located on the right front of the card punch or read/punch. 5, 6, 7 or 8 level tape can be punched at a speed of 110 characters per

second. The punch is manually adaptable for tape widths of 11/16 and 1 inch.

The punch makes its own sprocketholes, and may be loaded with blank tape in a matter of seconds.

|                                         | CHARACTERISTICS                                                                                        |                              |                                                                                                                                                                                                                      |  |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TAPE                                    | 11/16" or 1" paper or Mylar* tape.                                                                     | SIMULTANEITY                 | Tape punching overlaps reading, printing and processing.                                                                                                                                                             |  |  |  |  |  |
| DATA FORMAT<br>PROGRAMMED<br>OPERATIONS | 5, 6, 7 and 8 level codes. 10 frames to the inch.<br>Punches variable length blocks of data into tape. | PUNCH SYSTEM<br>OUTPUT AREA  | Die punch, produces chad tape.<br>Assigned area in core storage which may be<br>expanded by programmer. Area may be<br>used as working storage when not in use for<br>output. Size limited only by storage capacity. |  |  |  |  |  |
| SPEED                                   | 110 characters per second.                                                                             | MAXIMUM NUMBER<br>PER SYSTEM | One.                                                                                                                                                                                                                 |  |  |  |  |  |



Figure 10. Paper Tape Punch (mounted on card punch)

\* Trademark of the DuPont Company

#### DATA LINE TERMINAL

#### Type 1

The UNIVAC 1004 Data Line Terminal, Type 1, used in conjunction with a Bell 201A or 201B DATA-PHONE\* Data Set (or equivalent), makes possible direct exchange of data between any two UNIVAC 1004 processors so equipped (Fig. 11). Information is transmitted via private or exchange telephone facilities. The communication link is established by ordinary telephone calling procedures, so that any UNIVAC 1004 processor equipped with Data Line Terminal, Type 1, is available to any other in minutes, regardless of location. With the requisite input/output equipment, any of twelve combinations of input and output format are available for the communication of data:

|                  | то               |       |               |                  |  |  |
|------------------|------------------|-------|---------------|------------------|--|--|
| FROM             | MAGNETIC<br>TAPE | CARDS | PAPER<br>TAPE | PRINTED<br>FORMS |  |  |
| MAGNETIC<br>TAPE |                  |       |               |                  |  |  |
| CARDS            |                  |       | -             |                  |  |  |
| PAPER<br>TAPE    |                  |       |               |                  |  |  |



Figure 11. Data-Phone \* used with Data Line Terminal, Type 1

Any two or more of these operations can be combined in a single program. Both the local and the remote UNIVAC 1004 systems are fully available for processing, editing, and formatting of communicated data.

Communication links can also be established with an appropriately equipped UNIVAC 490 Real-Time System or UNIVAC 1107 system. Speed of data transmission is approximately 285 characters per second, using exchange facilities and the 201A Data Set, or 342 characters per second using private lines and the 201B Data Set.

The Data Line Terminal, Type 1, consists of a single module attached directly to the frame of the UNIVAC 1004 processor, and a cable for connection to the DATA-PHONE\* or equivalent set.

#### 7 bit serial: 6 data bits, 1 parity bit. DATA CHECKING DATA FORMAT Character parity, longitudinal parity. message length. PROGRAMMED Transmit, receive, acknowledge. **OPERATIONS** MAXIMUM NUMBER One unit per system. SPEED 285 characters/second (exchange) OF UNITS 342 characters/second (private lines) INPUT/OUTPUT SIMULTANEITY Read/Punch reading, Designated by programmer. May include Punching. and printer form advance can occur during AREA entire storage, which remains available for use as working storage when not in use message reception or transmission. for data communication.

#### CHARACTERISTICS

<sup>\*</sup> Trademark of Bell System

### Type 2

The Data Line Terminal, Type 2, provides the UNIVAC 1004 processor with the facility for telephone line communication with a remote magnetic tape terminal, the DIGITRONICS Dialo-verter\* Type 520. As with the Data Line Terminal, Type 1, leased lines or exchange facilities may be used. Through the DIGITRONICS D-520 Magnetic Tape Terminal, the UNIVAC 1004 III system is compatible with virtually all computing systems available today.

| CHARACTERISTICS          |                                                                                                                                                           |                |                                                                                                                                          |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DATA FORMAT              | 8 bit serial: 6 data bits, 1 parity bit, 1 reference bit.                                                                                                 | DATA CHECKING  | Character parity, longitudinal parity, mes-<br>sage length.                                                                              |  |  |  |  |
| PROGRAMMED<br>OPERATIONS | Transmit, receive, acknowledge.                                                                                                                           | MAXIMUM NUMBER | One unit per system.<br>Punching, Read/Punch reading, and printer<br>form advance can occur during message<br>reception or transmission. |  |  |  |  |
| SPEED                    | 250 characters/second(exchange)300 characters/second(private lines)                                                                                       | OF UNITS       |                                                                                                                                          |  |  |  |  |
| INPUT/OUTPUT<br>AREA     | Designated by programmer. May include<br>entire storage, which remains available<br>for use as working storage when not in use<br>for data communication. | SIMULTANEITY   |                                                                                                                                          |  |  |  |  |



Figure 12. UNIVAC 1001 Card Controller

#### CARD CONTROLLER

The UNIVAC 1001 Card Controller (Fig. 12) is a highspeed, multi-purpose machine whose principal function is to arrange card files into groups or sequences required for subsequent processing. It is equipped with two card-input magazines, each capable of feeding cards at speeds up to 1000 cpm. Seven output stackers permit a wide selection as well as matching, merging, and other common collating operations.

The Card Controller includes 256 characters of core storage and a variable sequence of program steps. At the option of the user, any or all information in any card may be selectively stored for one or more cycles and compared as required by the specific application. Thus, the user is not restricted to an arbitrary number of available comparing positions nor to a fixed sequence of operations.

In addition to comparing, the Card Controller provides such processes as adding, subtracting, and transferring of the data entered. Thus the input data can be processed and manipulated into the form desired for output. All operations of the Card Controller – card feeding, comparison, information storage, data processing, and stacker selection – are directed by the user through wiring of a removable connection panel.

With a UNIVAC 1001 Card Controller included in the UNIVAC 1004 III System, the unique abilities of each unit can be shared by the other units toward enhancing the efficiency of a common program. On the other hand, independent programs can be performed by the UNIVAC 1004 Processor and the Card Controller.

- The Processor, while executing a program not related to that being performed by the Card Controller can call in the Card Controller for a routine or function to supplement the Processor program.
- The Card Controller, while performing a program not related to that being executed by the Processor, can call in the Processor or any of its peripheral functions or equipment for a routine or function to supplement the Card Controller program.

## CARD CONTROLLER

#### CHARACTERISTICS

| MODELS         | 80 Column, 90 Column, 80 Column-<br>UNIVAC XS-3 24, 36 and 48 Program<br>Steps.                                  | PROGRAMMED<br>OPERATIONS | Card feeding, stacker selection,<br>comparing, sequence checking,<br>adding, subtracting, transferring.                                             |                                  |
|----------------|------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CARDS          | 80 Column, 90 Column, code image<br>(optional)                                                                   | ADDRESSING               | Any number of adjacent locations,<br>one location to entire storage, is<br>addressable as a single data unit.                                       |                                  |
| CHARACTERS     | 64 Codes: blanks, 27 special char-                                                                               | 1                        |                                                                                                                                                     |                                  |
| COMPARED       | acters, A-Z, 0-9                                                                                                 | PROGRAMMING              | Programming performed by connection<br>panel wiring. Both processing and                                                                            |                                  |
| CORE STORAGE   | 256 locations. Each location can<br>store any one of 64 characters. Full<br>storage available for input, output, |                          | <ul> <li>I/O operations can be performed on<br/>one program step.</li> <li>Provides standard collating function<br/>without programming.</li> </ul> |                                  |
|                | constants, intermediate results. No storage capacity required for in-<br>structions.                             | MULTI-PROGRAM<br>PANEL   |                                                                                                                                                     |                                  |
|                |                                                                                                                  | SPEEDS                   | Card feeding:                                                                                                                                       | 1000 cpm per feed                |
| CARD FEEDING   | Two feeds — primary and secondary —<br>1200 card capacity each. Individual                                       |                          |                                                                                                                                                     | 2000 cpm simultaneou feed.       |
|                | or simultaneous feed.                                                                                            |                          | Storage cycle time: 12 microseconds                                                                                                                 |                                  |
| CARD RECEIVING | Seven stackers: three for primary                                                                                |                          | Add/Subtract:                                                                                                                                       | 24 microseconds pe<br>digit.     |
|                | selection, three for secondary selec-<br>tion, one for merging. Capacity 1500                                    |                          | Compare:                                                                                                                                            | 24 microseconds pe character.    |
|                | cards each.                                                                                                      |                          | Transfer:                                                                                                                                           | 24 microseconds pe<br>character. |

